EFFETTO DEL DIVERSO RAPPORTO MASCHI/FEMMINE SULLA PRODUZIONE DEL MULARD (*)

NATURAL MATING IN CROSSBREEDING OF MUSCOVY DRAKE AND PEKIN DUCK: EFFECT OF DIFFERENT MALE/FEMALE RATIO

Gisella PACI, Margherita MARZONI FECIA DI COSSATO, Marco BAGLIACCA

RIASSUNTO

Per la prova sono stati impiegati 16 maschi di anatra muschiata e 40 femmine di anatra pechino al primo anno riproduttivo. I gruppi sono stati allevati in parchetti all’aperto in due diversi rapporti maschi/femmine, 1:2 e 1:3.

Su di essi è stata controllata la fertilità e sono state eseguite riprese filmate per i rilievi del comportamento riproduttivo.

I risultati hanno evidenziato che il rapporto 1:2 fornisce valori di fertilità significativamente più alti di quello 1:3 (72,9% e 58,1% rispettivamente). L’andamento stagionale della fertilità ha denotato una precoce diminuzione della stessa da imputarsi all’insorgenza di particolari atteggiamenti comportamentali. Dalle osservazioni etologiche è emerso che nei gruppi con rapporto 1:2 gli accoppiamenti avvenivano con maggior successo mentre, in quelli con rapporto 1:3, la coalizione delle femmine contro i maschi accentuava le difficoltà riproduttive.

Parole chiave: anatra, incrocio, fertilità, comportamento.

SUMMARY

To study the possibility of producing Muscovy drake* Pekin duck crosses, the AA. monitored the fertility of the eggs obtained in natural mating for one year. 16 Muscovy drakes and 40 Pekin ducks were reared in outdoor pens with two different male/female ratio, 1:2 and 1:3.

The results showed significant differences between egg fertility of the two male/female ratio (1:2=72.9% and 1:3=58.1%, P<0.01). The egg fertility decreased with

(*) Ricerca effettuata con contributo C.N.R. 1990.
laying time (P<0.01). The observation of the reproductive behaviour showed a strong resistance of the Pekin duck against the repeated attempts of rape particularly in flocks with male/female ratio 1:3.

Key words: duck, cross-breeding, egg-fertility, behaviour.

INTRODUZIONE

Il mulard, prodotto dell’incrocio tra maschi di anatra muschiata e femmine di anatra comune, è molto diffuso in Francia e nei Paesi del-l’Est Europeo.

Il valore zootecnico di questo ibrido, ben conosciuto nei Paesi sud-detti, è dovuto alle caratteristiche qualitative delle carni, alla rusticità, alla buona capacità di accrescimento e alla particolare resistenza agli stress quali l’ingozzamento per la produzione di fegato grasso. Ciò lo rende una valida fonte di produzioni alternative.

La fertilità riscontrata nell’accoppiamento naturale tra anatra muschiata e anatra comune risulta piuttosto variabile ed ha sempre posto un freno alla produzione di detti ibridi ed al loro sviluppo zootecnico (8, 17, 18). Per migliorare i risultati produttivi di tale incrocio sono state intraprese numerose ricerche al fine di indagare sulle cause che limitano la fertilità delle uova.

A questo proposito è stato più volte suggerito che tale limite può dipendere da molteplici fattori: difficoltà nell’atto fecondativo dovute all’esistenza di incompatibilità comportamentali nell’accoppiamento, differenze morfologiche a livello cromosomico, incompatibilità fisiologiche tra i gameti maschili e l’apparato riproduttore femminile ed altre ancora (2, 3, 7).

Le difficoltà incontrate nell’accoppiamento naturale hanno indiriz-zato i ricercatori ad indagare anche sull’impiego dell’inseminazione artificiale, e di conseguenza sui metodi di prelevamento del seme, sulla diluizione e sul dosaggio del seme stesso (4, 6, 9).

L’impiego di questa tecnica, che ha permesso di migliorare i valori di fertilità delle uova (15, 16), è pienamente giustificato solo se utilizzato nell’allevamento intensivo ed in Paesi dove esiste un notevole mercato di questo ibrido. La sua applicazione infatti, richiede un maggior capitale di investimento legato all’utilizzo delle gabbie, un aumento di manodopera e, al contrario di quanto accade negli allevamenti che impiegano la fecondazione naturale, la disponibilità di personale tecnico qualificato.

L’accoppiamento naturale invece svolge un ruolo sicuramente deter-minante negli allevamenti di tipo tradizionale, ancora diffusi in Italia nel settore avicolo relativo agli anatidi.
Con la presente ricerca si intende pertanto fornire sia indicazioni a chi opera con il metodo tradizionale circa le performances riproduttive di queste specie sia individuare le condizioni di allevamento più idonee alla convivenza dei due anatidi, caratterizzati da differenti abitudini ed istinti comportamentali. Attualmente infatti i dati bibliografici circa le dimensioni dei gruppi familiari dei riproduttori sono limitati e i risultati che vengono riportati da ricercatori per la fertilità nell'ibridazione naturale molto variabili (4, 5, 10, 11, 12).

Materiali e metodi

Per la prova sono stati impiegati un totale di 16 maschi di anatra muschiata e 40 femmine di anatra comune, del tipo pechino, al primo anno riproduttivo. I riproduttori, di almeno 26 settimane di età, sono stati accasati un mese prima dell'inizio della deposizione.

I gruppi sono stati allevati in parchetti all'aperto, a luce naturale, alla densità di 1 animale/m² e alimentati *ad libitum* con un pellet commerciale da deposizione, vedi tabella n. 1.

TABella 1 - Composizione del pellettato commerciale per anatre in deposizione.

<table>
<thead>
<tr>
<th>INGREDIENTI</th>
<th>COMPOSIZIONE CHIMICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farina di Mais</td>
<td>% 59,10 Sostanza secca % 87,61</td>
</tr>
<tr>
<td>F. estr. di Soia, 50% prot.</td>
<td>% 17,20 E.M.(*) % 11,49</td>
</tr>
<tr>
<td>Farina di Carne, 56% prot.</td>
<td>% 4,00 Proteina grezza (su ss) % 19,90</td>
</tr>
<tr>
<td>F. Medica dis., 17% prot.</td>
<td>% 3,00 Estratto etereo (su ss) % 4,08</td>
</tr>
<tr>
<td>Farina di Avena</td>
<td>% 2,50 Fibra grezza (su ss) % 3,80</td>
</tr>
<tr>
<td>Farina di Grano tenero</td>
<td>% 2,00 Ceneri (su ss) % 13,93</td>
</tr>
<tr>
<td>Farina di Pesce, 67% prot.</td>
<td>% 1,00 Estr. inazotati (su ss) % 58,29</td>
</tr>
<tr>
<td>Grasso animale</td>
<td>% 0,60 Calcio % 4,37</td>
</tr>
<tr>
<td>Carbonato di Calcio</td>
<td>% 8,50 Fosforo % 0,69</td>
</tr>
<tr>
<td>Fosfato bicalcico</td>
<td>% 0,70 Metionina (*) % 0,33</td>
</tr>
<tr>
<td>Cloruro di Sodio</td>
<td>% 0,20 Met. + cist. (*) % 0,59</td>
</tr>
<tr>
<td>Bicarbonato di Sodio</td>
<td>% 0,20 Lisina (*) % 0,86</td>
</tr>
<tr>
<td>Integratore (**)</td>
<td>% 1,00 Triptofano (*) % 0,19</td>
</tr>
</tbody>
</table>

(*) Valori calcolati.
(++) Integrazione per Kg di alimento: vitamina A, 10.000UI; vitamina D₃, 3.000UI; vitamina E, 15mg; vitamina K₃, 3mg; vitamina B₁, 1mg; vitamina B₂, 7mg; vitamina B₆, 2,5mg; vitamina B₁₂, 0,011mg; vitamina PP, 25mg; acido d-pantotenico, 15mg; acido folfico, 0,4mg; colina, 250mg; Fe, 22mg; Co, 2mg; Mn, 70mg; Cu, 15mg; Zn, 33mg; DLmetionina, 400mg; BHT, 100mg.
Il piano sperimentale ha previsto l’allevamento dei soggetti in due diversi rapporti maschi/femmine (M/F), 1:2 e 1:3; per ciascun rapporto sono stati impiegati tre parchetti nei quali i riproduttori sono stati ripartiti come segue:

1 colonia (6 maschi e 12 femmine: M/F = 1:2)
2 famiglie (1 maschio e 2 femmine: M/F = 1:2)
1 colonia (6 maschi e 18 femmine: M/F = 1:3)
2 famiglie (1 maschio e 3 femmine: M/F = 1:3)

Le uova, raccolte due volte al giorno nel corso di una stagione riproduttiva, sono state disinfettate e stoccate per un periodo variabile da uno a sette giorni ad una temperatura di 11°C ed una UR del 70%. Un totale di 6430 uova sono state poste in una incubatrice a ventilazione forzata e al 10° giorno di incubazione è stata eseguita la speratura per la determinazione della fertilità. Secondo quanto consigliato per queste uova (1) le stesse sono state spruzzate giornalmente dall’11° al 27° giorno di incubazione quindi trasferite in camera di schiusa.

Sia sui gruppi familiari che sulle colonie sono state eseguite riprese filmate (576 ore in totale) per i rilievi sul comportamento riproduttivo. Ogni gruppo è stato sottoposto a dodici giorni di registrazione ripartiti nel corso della stagione riproduttiva.

I dati relativi alla fertilità ad alla schiusa sono stati analizzati mediante l’analisi della distribuzione delle frequenze ed i modelli log-lineari.

RISULTATI

La fertilità delle uova ottenute dall’accoppaiamento naturale tra anatra muschiata e anatra comune (tabella n. 2) risulta differire significativamente tra le tesi: valori più alti si evidenziano nel rapporto 1:2 rispetto al rapporto 1:3 (72,9% e 58,1%, rispettivamente). Tali risultati appaiono simili a quelli riportati da altri AA., che hanno posto a confronto vari rapporti maschi/femmine ed hanno evidenziato come le migliori performances riproduttive derivino dai rapporti 1:2,5 (fertilità 79%) e 1:1,8 (fertilità 81%) particolarmente per gruppi con non più di 10 maschi (5).

Il basso valore di fertilità (58,1%) che si registra nel rapporto 1:3 indica probabilmente uno squilibrio tra i riproduttori che comporta una scarsa fecondazione di alcune femmine.
Tabella 2 - Fertilità delle uova ottenute dall’incrocio tra anatra muschiata e anatra comune.

<table>
<thead>
<tr>
<th>RAPPORTO M/F</th>
<th>FERTILITÀ (% su uova incubate)</th>
<th>Totale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1:2</td>
<td>1:3</td>
</tr>
<tr>
<td>FEBBRAIO-MARZO</td>
<td>81,4 NS<sub>a</sub></td>
<td>80,2 NS<sub>a</sub></td>
</tr>
<tr>
<td>APRILE-MAGGIO</td>
<td>76,8 A<sub>a</sub></td>
<td>58,7 B<sub>c</sub></td>
</tr>
<tr>
<td>GIUGNO-LUGLIO</td>
<td>74,8 A<sub>a</sub></td>
<td>65,0 B<sub>b</sub></td>
</tr>
<tr>
<td>AGOSTO-SETTEMBRE</td>
<td>65,2 A<sub>b</sub></td>
<td>36,2 B<sub>d</sub></td>
</tr>
<tr>
<td>TOTALE</td>
<td>72,9 A</td>
<td>58,1 B</td>
</tr>
</tbody>
</table>

Nota: lettere maiuscole diverse indicano differenze significative tra i rapporti M/F; lettere minuscole diverse indicano differenze significative all’interno della stagione, (P<0,01).

Se osserviamo inoltre l’andamento della fertilità col procedere della stagione riproduttiva si nota una anomala precoce diminuzione della stessa probabilmente legata, a nostro avviso, più all’insorgenza di particolari atteggiamenti comportamentali che al noto decadimento della qualità dello sperma e dell’uovo responsabili del normale calo di fertilità in avanzato periodo riproduttivo.

L’osservazione del comportamento riproduttivo ha evidenziato come nelle famiglie e nella colonia, con rapporto 1:2, gli accoppiamenti avvenissero con una certa frequenza nella giornata ed indistintamente con le femmine presenti malgrado la resistenza opposta da queste ultime che finivano poi con l’assoggettarsi.

La violenta reazione di rifiuto delle anatre comuni associata ad una loro forte coalizione nei confronti dei maschi ha portato viceversa, nel rapporto 1:3, al fallimento di molti tentativi di accoppiamento. È emerso inoltre, talvolta, un particolare atteggiamento delle femmine contro i maschi rappresentato da manifestazioni di aggressività.

Tali reazioni nel loro complesso conducevano ad un parziale isolamento dei maschi e facilitavano, nella colonia, l’insorgenza di comportamenti omosessuali, come già riportato in altre esperienze condotte sull’ibridazione degli anatidi (3, 5).

All’origine di questa situazione risiede il diverso comportamento sessuale delle due specie che vede nell’anatra muschiata l’assenza di un
preciso rituale di corteggiamento precopulatorio invece ben definito e di fondamentale importanza nell'anatra comune (13) e nel germano reale (14), sua specie ancestrale.

Per quanto riguarda la schiusa delle uova fertili non sono state registrate differenze significative tra i gruppi sperimentali. Per la stagionalità (figura n. 1) invece sono stati confermati valori significativamente diversi (P<0,01) legati in modo particolare, come già evidenziato in una nostra precedente esperienza (1), alla maggiore mortalità embrionale precoce all'inizio della attività riproduttiva. Va sottolineato che tale osservazione è possibile solo a condizione di effettuare l'esame distruttivo delle uova risultate non fertili alla speratura in quanto parte di quelle apparentemente non fertili sono in realtà embrioni morti in stadio preoccitico.

![Bar chart showing egg hatching rate](image)

Fig. 1 - Andamento della schiusa nel corso della stagione riproduttiva.

CONCLUSIONI

L'insieme dei risultati ottenuti permette di concludere che la produzione del mulard mediante l'accoppiamento naturale dei riproduttori ha una bassa efficienza produttiva. Infatti nonostante che il più basso rapporto maschi/femmine fornisca un interessante tasso di fertilità, la
validità economica di tale allevamento risente dello svantaggio causato dalla maggiore incidenza dei maschi.

I bassi valori di fertilità registrati col più alto rapporto maschi/femmine sembrano da imputarsi ad un accesso comportamento di segregazione dell’anatra comune nei confronti dei maschi muschiati che, ancor prima del decadimento stagionale della qualità dello sperma e dell’uovo, determina una riduzione della fertilità. A tale riguardo sembra consigliabile contenere il numero delle femmine comuni da assegnare al maschio muschiato per evitare risultati di scarsa fertilità legati non tanto ad una incapacità fecondante del maschio, quanto alla reattività e talvolta aggressività presentata dalle anatre pechino.

BIBLIOGRAFIA

