ATTI XII CONVEGNO
CAGLIARI 5 - 6 OTTOBRE 1990
a cura di F. Rambotti – G. Gabrielli – D. Canosci
PROFILO METABOLICO DI UNA POPOLAZIONE DI CERVI
LA CONCENTRAZIONE SIERICA DI ALCUNI ENZIMI
DURANTE IL PERIODO ESTIVO

G. Biagi,* M. Bagliacca,** A. Valentini***

* Istituto di Patologia Speciale e Clinica Medica Veterinaria - Università di Pisa
** Dipartimento di Scienze Anatomiche - Fisiologia e delle Produzioni Animali - Università di Pisa
*** Istituto di Zootecnia - Università della Tuscia - Viterbo

Introduzione

La possibilità di sfruttare le cosidette aree marginali con allevamenti alternativi a quello bovino, ed ovino in particolare, già da alcuni anni ha de-

stato l’interesse degli allevatori di molti paesi del Nord e Centro Europa. Attualmente, anche in Italia, un sempre maggiore interesse viene rivolto agli ungulati selvatici, daini, cervi, mufloni, cinghiali e caprioli che costituis-

cono una potenziale risorsa zootecnica non indifferente dal punto di vista economico. Infatti, per la loro resistenza alle malattie infettive e parasitarie, la capacità di vivere all’aperto tutto l’anno senza ricoveri, l’utilizzazione differenziata del bosco e del sottobosco, la qualità della carne e la longevità permettono lo sfruttamento di aree, in genere situate lungo la catena appen
ninica dell’Italia Centrale, non altrimenti utilizzabili e che costituiscono un vuoto produttivo.

La conoscenza dei valori di riferimento e delle relative variazioni in funzione di differenti variabili dei parametri ematici che in vario modo ed in diversa misura costituiscono un valido ed indispensabile supporto per la diagnosi di differenti situazioni patologiche, diviene improrogabile in quanto che per lo sviluppo di un allevamento moderno e redditizio, è neces

sario per il veterinario creare anche per gli ungulati dei programmi di sorveglianza sanitaria simili a quelli in uso per le altre specie di animali in sfruttamento zootecnico.

A prosecuzione di precedenti indagini (1, 2, 3) con questa nota riferiamo
do i dati relativi alle concentrazioni di alcuni enzimi durante il periodo estivo e le variazioni che subiscono in funzione del sesso e dell’età.

Materiali e metodi

Lo studio è stato condotto in un allevamento di cervi situato in un’area tipica dell’Appennino toscano (ceduo misto di faggio e castagno 65%, prato polifita 30%, servizi e pozze d’acqua 5%) nel periodo fine agosto - ini
tizio settembre, quando gli animali venivano riuniti in appositi recinti per la visita di controllo ed il trattamento antiparassitario intestinale e cutaneo.
Per la prova sono stati presi in considerazione 40 animali, di cui 15 soggetti fino ad un anno di età (6 maschi e 9 femmine) e 25 femmine adulte (tra 2 e 7 anni) in differenti momenti fisiologici, e precisamente: 10 soggetti in lattazione, 10 che avevano finito di allattare, 5 che non avevano partorito e non erano gravi.

Al momento del contenimento per la somministrazione del vermifugo (per os) venivano effettuati i prelievi di sangue alla giugulare mediante vacuteiner. Sul siero venivano dosati nell’arco di 48 ore tramite metodo enzimatico colorimetrico a 25°C i seguenti enzimi: fosfatasi alcalina (FOSAL), la γ-glutamil transferasi (GGT), la aspartato aminotransferasi o transaminasi glutammico-ossalacetica (AST), la alanina aminotransferasi o transaminasi glutammico-piruvica (ALT), la creatin-fosfo-chinasi (CPK), la lattico deidrogenasi (LDH) e l’α-idrossibutirril-deidrogenasi (HBDH).

I dati raccolti sono stati analizzati statisticamente secondo il metodo dei minimi quadrati considerando come fattori fissi il sesso, l’età, lo stato in asciutta o in lattazione e se le femmine avevano partorito o meno.

Risultati e considerazioni

Nella Tab. 1 sono riportate le concentrazioni sieriche dei parametri ematici (espresse come medie stimate ± errore standard). Nella Tab. 2 è riportata la significatività delle differenze osservate per i confronti che si sono ritenuti appropriati.

Da un confronto con i pochi dati reperibili in letteratura, risulta che i valori sierici individuati in questa popolazione di cervi, sono in accordo con quelli riportati da Kent e Coll. (5) per quanto riguarda la AST e la GGT, sono analoghi a quelli riferiti da Wilson e Coll. (8) per quanto riguarda la AST e la CPK, e comparabili a quelli di Knox e Coll. (6) per quanto riguarda la FOSAL, la GGT, l’LDH e l’HBDH. Le concentrazioni da noi individuate per la FOSAL e la CPK sono superiori a quelle di Kent e Coll., i quali hanno però effettuato i dosaggi su sangue di animali uccisi; i tassi della GGT risultano superiori a quelli individuati da Wilson e Coll. (8); al contrario, i livelli della AST ed ALT sono inferiori a quelli individuati da Knox e Coll. (6).

Inoltre, mentre per quanto riguarda la concentrazione sierica della GGT, della ALT, della CPK e dell’HBDH non sono state evidenziate differenze significative in funzione del sesso e dell’età, l’analisi preliminare della varianza eseguita dal Duncan’s multiple range test (SAS Institute, (7) ha evidenziato una variazione a livello della FOSAL, della AST e della LDH in funzione di tali variabili.

In particolare:

1. la concentrazione della fosfatasi alcalina rilevata in tutti soggetti giovani (498 ± 64 mU/ml), (i valori sono stati rispettivamente di 550 ± 113 mU/ml nei maschi e di 463 ± 74 mU/ml nelle femmine) è risultata statisticamente più elevata che negli adulti (266 ± 36 mU/ml). Nei mammiferi, fisiologicamente, la più alta attività fosfatasic si riscontra negli osteobla-
| Tab. 1 - Concentrazioni sieriche degli enzimi nel cervo durante il periodo estivo mU/ml |
|-----------------------------------|---------------------------------|-------------------------------|-----------------|---------------------------------|-----------------|---------------------|------------------|
| | GIOVANI | ADULTI | Regr. età | TOTALE GENERALE n = 40 |
| | Maschi n = 6 | Femmine n = 9 | Totale n = 15 | No-Parto n = 5 | Asciutte n = 10 | In Latt. n = 10 | n = 25 |
| FOSAL media | 550 | 463 | 498 | 290 | 240 | 280 | 266 | 2 | 353 |
| | es 113 | 74 | 64 | 75 | 62 | 54 | 36 | 18 | 38 |
| GGT media | 31,8 | 30,1 | 30,8 | 24,8 | 34,6 | 27,7 | 29,9 | 1,6 | 30,2 |
| | es 1,9 | 1,9 | 1,4 | 0,8 | 5,0 | 1,0 | 2,2 | 1,1 | 1,5 |
| AST media | 36,8 | 36,2 | 36,5 | 29,0 | 40,3 | 46,0 | 40,3 | 2,0 | 38,9 |
| | es 2,3 | 1,8 | 1,4 | 3,0 | 1,4 | 2,7 | 1,8 | 0,8 | 1,3 |
| ALT media | 33,2 | 40,0 | 37,3 | 36,2 | 44,0 | 47,1 | 43,7 | 2,3 | 41,3 |
| | es 2,8 | 3,0 | 2,3 | 1,7 | 3,2 | 3,7 | 2,1 | 1,0 | 1,7 |
| CPK media | 175 | 231 | 209 | 185 | 160 | 224 | 191 | 4 | 197 |
| | es 14 | 33 | 22 | 8 | 20 | 20 | 13 | 6 | 11 |
| LDH media | 1044 | 1089 | 1071 | 1121 | 1023 | 1253 | 1135 | 3 | 1111 |
| | es 55 | 37 | 32 | 53 | 32 | 22 | 28 | 14 | 22 |
| HBDH media | 465 | 475 | 471 | 460 | 537 | 443 | 484 | 13 | 479 |
| | es 51 | 46 | 34 | 98 | 21 | 38 | 28 | 13 | 22 |

| Tab. 2 - Significatività delle differenze osservate |
|-----------------------------------|---------------------------------|-----------------|-----------------|---------------------|
| | GIOVANI | ADULTI | GIOVANI VS ADULTI |
| | MASCHI VS FEMMINE | IN LATT. VS ASCIUTTE | NO-PARTO VS PARTO | |
| FOSAL | NS | NS | NS | ** |
| GGT | NS | NS | NS | NS |
| AST | NS | ** | ** | NS |
| ALT | NS | NS | NS | NS |
| CPK | NS | NS | NS | NS |
| LDH | NS | ** | NS | NS |
| HBDH | NS | NS | NS | NS |
sti, oltre ad essere presente l'enzima in alte concentrazioni nei canalici biliari, nella mucosa intestinale, nei tubuli contorti prossimali e nella placenta. Pertanto, la notevole differenza fra il tasso enzimatico riscontrato nei giovani cervi rispetto agli adulti, riteniamo possa considerarsi fisiologica, in quanto negli animali in sviluppo il periodo dell'accrescimento è caratterizzato da una attiva formazione e aumento del tessuto osseo.

2 - la concentrazione della aspartato amino transferasi delle femmine in lattazione (46 ± 2.7 mU/ml) è risultata significativamente superiore a quella riscontrata nelle cere in asciutta (40.3 ± 1.4 mU/ml) ed entrambe sono risultate più alte rispetto a quelle che non avevano partorito (29.0 ± 3.0 mU/ml) mentre la concentrazione della LDH è risultata maggiore soltanto nelle femmine in lattazione (1253 ± 22 mU/ml) rispetto a quelle in asciutta (1023 ± 32 mU/ml). La aspartato amino transferasi, presente in molti tessuti, viene dosata nelle specie domestiche per evidenziare danni a livello muscolare ed epatico (4); la latticodrogenasi, enzima ubiquitario, é particolarmente presente nei tessuti che utilizzano il glucosio quale fonte di energia. Pertanto, riteniamo che i valori più elevati individuati nelle cere in lattazione siano in gran parte da ricondurre al maggior stress che subiscono questi animali prima mentre vengono riuniti in un recinto e poi per la separazione forzata dai cerbiatti e le manovre di contenimento al momento del prelievo del sangue: in queste fasi del contenimento infatti l'eccitamento che si propaga nel gruppo può originare un elevato stress nei singoli individui, che si manifesta con elevate concentrazioni enzimatiche.

Conclusioni

I risultati forniti con il presente lavoro, che confermano la differenziazione di alcuni degli enzimi sierici in funzione delle diverse condizioni ambientali in cui vivono gli animali, hanno lo scopo di fornire i valori di base da utilizzare per i cervi che vivono nell'Appennino centrale. Tali parametri possono essere utili per inquadrare correttamente eventuali possibili situazioni sub-patologiche ed essere di ausilio per la conferma di malattie metaboliche incipienti.
Finito di stampare
nel mese di Settembre 1991
dalle Grafiche Diemme - Bastia Umbra (PG)