XVI CONGRESSO MUNDIAL DE BUIATRIA
VI CONGRESSO LATINO AMERICANO DE BUIATRIA

XVI WORLD BUIATRICS CONGRESS
XVIEME CONGRES MONDIAL DE BUIATRIE
16. WELTKONGRESS FUR BUIATRIK

13 A 17 DE AGOSTO/1990
SALVADOR/BAHIA/BRASIL

Biagi, G.; Bartalena, L.; Valentini, A.; Bagliacca, M.;
Signorini, G.C.; Antonangeli, L.; Bogazzi, F.;
Croce, G.D.; Romagnoli, A. .. 983

CHANGES IN SERUM INSULIN CONCENTRATIONS DURING
THE FIRST 6 MONTHS OF LIFE: A PROSPECTIVE STUDY
IN ITALIAN FRIESIAN CALVES.

TOMO II
INTRODUCTION

Somatic growth and development of animals are related with thyroid hormones, pituitary growth hormone, and insulin secretion. Insulin is present in the circulation at all ages and is directly involved in the regulation of metabolism by coordinating the storage and mobilization of carbohydrates, amino acids and fats (1, 5). This hormone increases the movement of glucose into many peripheral tissues (3, 4, 17) including adipose tissue (11) and muscle (10): protein synthesis in skeletal muscle is reduced in absence of insulin (12). Numerous studies report that the serum insulin concentration is to be related to glucose availability (2, 8, 16) and is related to the diet (15).

The purpose of this paper is to describe the changes in serum insulin concentrations in Italian Friesian calves during the first six months of life.

MATERIALS AND METHODS

Animals. Forty five Italian Friesian calves (19 males and 26 females) were included in this study. The animals were born at the end of normal pregnancies (272±3 days).

Table 1 - Chemical composition of the feed used during the trial (a.f.b.)

<table>
<thead>
<tr>
<th></th>
<th>commercial milk replacer</th>
<th>weaning mixture</th>
<th>concentrated food</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture.........</td>
<td>4.5</td>
<td>12.0</td>
<td>13.0</td>
</tr>
<tr>
<td>Crude protein....</td>
<td>23.5</td>
<td>16.3</td>
<td>15.7</td>
</tr>
<tr>
<td>Ether extract....</td>
<td>13.0</td>
<td>3.0</td>
<td>5.7</td>
</tr>
<tr>
<td>Crude fiber......</td>
<td>0.5</td>
<td>14.5</td>
<td>9.4</td>
</tr>
<tr>
<td>Ash..............</td>
<td>7.0</td>
<td>7.5</td>
<td>9.6</td>
</tr>
</tbody>
</table>
the 5th day, when the average animal weight was about 36 Kg, they received 8 l of a commercial milk replacer (4 l in the morning and 4 l in the afternoon). At the 30th day (average live weight 70 Kg) the milk replacer was substituted by 400-500 g of a weaning mixture (the animals can eat the weaning mixture till from the second week). After 2-3 months the weaning mixture was gradually substituted by 1-1.5 Kg of concentrated food and 1-2 Kg of lucerne hay (alfalfa). These quantities were gradually increased up to the 6th months (average live weight 170 Kg). (See table 1 for the chemical composition of the employed feed).

Blood samples were collected from all calves by puncture of the right jugular vein in the following way: the first and the second sample were collected at 24 and 48 h after the birth, respectively; the following 10 samples at weekly intervals and the last 4 samples every month up to 6th month. Blood was drawn in the morning (from 8:00 to 9:00 h) with the exception of the first 2 samples which were obviously related to the delivery occurrence. In fact, if the calving took place during the day, the blood sample was collected 2-3 h after delivery and before sucking the maternal colostrum; if the calf birth took place at night, the blood sample was collected 12-14 h after delivery.

The births were distributed over a period of 6 months (January-June 1985) as follows: January (3 males and 4 females); February (3 males and 5 females); March (5 males and 3 females); April (2 males and 7 females); May (3 males and 3 females); June (3 males and 4 females).

Assays. Sera were frozen until analyzed. The assay was carried out in duplicate. All samples belonging to the same animal were run in the same assay to avoid interassay variations. The interassay coefficient of variations was < 5\%. Serum insulin concentrations were measured by specific RIA (Insulin Test IV732, Cambridge Medical Technology, innovet Division, MA - USA).

The data were analyzed by the following statistical model:

$$INS_{ijkt} = \mu + sex_i + month_j + day_k + (subj_{ij} \times day_k)_{ijkt}$$

where:

- INS = insulin blood level;
- sex = sex of calf;
- $month$ = month of birth;
- day = age of the calf in days: the variable "day" was considered as a continuous (b*day) and a categorical variable;
- $subj$ = subject I.D.

The interaction between subject and day was considered as the error term.

RESULTS AND DISCUSSION

The estimated serum insulin levels are shown in Table 2 and the average observed values are shown in Figure 1. Sex-related differences were observed, females showing higher concentrations than male. No significative difference was observed in relationship to the month of the birth.

Serum insulin concentrations were higher on the first day than on second day (24.02±10.93 μU/ml and 18.18±7.87 μU/ml, respectively; $p<0.01$).
Table 2 - LS-means estimated at 1 day old

<table>
<thead>
<tr>
<th>Factor</th>
<th>LS-mean</th>
<th>Std.Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>19.9<sup>a</sup></td>
<td>0.49</td>
</tr>
<tr>
<td>Female</td>
<td>21.4<sup>b</sup></td>
<td>0.40</td>
</tr>
<tr>
<td>Month</td>
<td></td>
<td></td>
</tr>
<tr>
<td>January</td>
<td>18.6</td>
<td>0.77</td>
</tr>
<tr>
<td>February</td>
<td>20.3</td>
<td>0.73</td>
</tr>
<tr>
<td>March</td>
<td>20.0</td>
<td>0.73</td>
</tr>
<tr>
<td>April</td>
<td>23.2</td>
<td>0.69</td>
</tr>
<tr>
<td>May</td>
<td>22.4</td>
<td>0.82</td>
</tr>
<tr>
<td>June</td>
<td>20.2</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>"b"</td>
<td>-0.022</td>
</tr>
</tbody>
</table>

Serum insulin concentrations differed between the first and the second period of life (2nd-70th vs. 70th-168th).

Basal serum insulin values of 15 to 50 μU/ml have been reported in adult cattle (7, 9, 13, 14, 18). A limited number of reports are available on serum insulin concentrations in the early postnatal life, although Erb et al. also found that serum insulin concentrations declined from the first to second day after birth (6). It must be noted that the values we found were higher than those reported by Erb et al. (6):

These differences may likely be due to the different breeds considered in these reports. The values we found at 6th months of life were in agreement with those observed by Irvin & Trenkle (9). Furthermore, it is interesting to note the fall in serum insulin level at 84 days. At this age in fact the calves change their feed, the weaning mixture being replaced by hay (alfalfa) and meal. The effect of hay on the absorption and consequently on plasma kinetics of nutrients may explain the phenomena observed on insulin serum levels. Later the insulin concentrations increases again and this may be due to the maturation of the digestive tract.

To our knowledge, no longitudinal studies had been so far carried out concerning the changes in serum insulin levels throughout the first 6 months of life in Italian Friesian calves. Our data clearly show that, after the initial decrease occurring during the first two days of life, the serum insulin concentrations remain fairly constant thereafter. These results suggest a complete maturation of islet cell function in the early postnatal life.

REFERENCES
5. Cahill, G.P.: 1971 Diabetes, 20, 785
SUMMARY

The aim of the present study was to evaluate the variations of serum insulin concentrations in Italian Frisian calves (IFC) during the first 6 months of life. For this purpose insulin levels were measured by specific RIA in 45 IFC (19 males and 26 females) born from January to June. Blood samples were drawn once a day for the first 2 days, then at weekly intervals for 10 weeks, and then at monthly intervals up to 6 months. The data were analyzed by a split-plot least square method for repeated hormonal measures over time. The serum insulin concentrations in IFC showed significant differences (p < 0.01) during the first 6 months of life. The serum value (estimated mean ± standard dev.) 24 h after birth was 24.0±10.92 µU/ml. A significant reduction of insulin level was observed after 48 h: 18.2±7.87 µU/ml. An increase of insulin concentration was observed at first week (19.5±11.18 µU/ml), and the values remained practically unchanged up to 10 weeks. The insulin levels decreased up to 3 months (15.2±5.36 µU/ml), then they increased again remaining around 17-18 µU/ml up to 6 months of life.

SUMÁRIO

O objectivo do presente estudo foi avaliar as variações de concentrações de insulina no soro nos Vitelos Italianos da Frísia (VIF) durante os primeiros 6 meses de vida. Para este fim, os níveis de insulina foram medidos por Radioimunoeanálise específicos em 45 VIF (19 machos e 26 fêmeas) nascidos desde janeiro até junho. Foram obtidas amostras de sangue uma vez por dia durante os 2 primeiros dias, depois com intervalos de uma semana durante 10 semanas e depois com intervalos de um mês até aos 6 meses. Os dados foram analisados por um diagrama duplo com o método dos mínimos quadrantes por medidas hormonais repetidas naquele período. A concentração de insulina no soro nos VIF mostraram diferenças significativas (p < 0.01) durante os primeiros 6 meses de vida. O valor de soro (valor médio estimado ± variante do padrão) 24 h depois do nascimento era 24.0±10.92 µU/ml. Uma redução significativa do nível foi observada depois de 48 h: 18.2±7.87 µU/ml. Um aumento de concentração de
insulina foi observado na primeira semana (19.5±11.18 µU/ml) e os valores ficaram praticamente inalteráveis até 10 semanas. Os níveis de insulina diminuíram até aos 3 meses (15.2±5.36 µU/ml), depois aumentaram outra vez ficando cerca 17-18 µU/ml até 6 meses de vida.

ZUSAMMENFASSUNG

Os trabalhos publicados nestes livros são a reprodução exata dos originais enviados pelos autores.

The scientific manuscripts published on the proceedings are the exact reproduction of the material furnished by the authors.

Edita : Interlink Consultoria & Eventos Ltd.
Av. Centenário, 2883 - Edf. Vitória Center
Salas 208/209 - Chame-Chame - CEP - 40.160
Salvador-Bahia-Brasil

Imprime : Impressora Rocha Ltda
Salvador-Bahia-Brasil